Искусство схемотехники. Том 1 [Изд.4-е] - Пауль Хоровиц
Шрифт:
Интервал:
Закладка:
Для того чтобы предусмотреть работу в жестких условиях, при расчете Рстаб также следует использовать значения Uвх (макс), R (мин.) и Iвых (мин.).
Упражнение 2.3. Разработайте стабилизированный источник напряжения +10 В для токов нагрузки величиной от 0 до 100 мА; входное напряжение изменяется в пределах от 20 до 25 Β. В любых условиях (в том числе и в самых жестких) через стабилитрон должен протекать ток 10 мА. На какую предельную мощность должен быть рассчитан стабилитрон?
Стабилизированный источник с зенеровским диодом, как правило, используют в некритичных схемах или в схемах, где потребляемый ток невелик.
Ограничения такой схемы проявляются в следующем:
1. Напряжение Uвых нельзя отрегулировать или установить на заданное значение.
2. Стабилитроны имеют конечное динамическое сопротивление, а в связи с этим они не всегда достаточно сильно сглаживают пульсации входного напряжения и влияние изменения нагрузки.
3. При широком диапазоне изменения токов нагрузки приходится выбирать стабилитрон с большой мощностью рассеяния, так как при малом токе нагрузки он должен рассеять на себе значительную мощность, равную максимальной мощности в нагрузке.
На рис. 2.12 представлена улучшенная схема, в которой зенеровский диод отделен от нагрузки эмиттерным повторителем. В такой схеме дела обстоят лучше.
Рис. 2.12. Стабилитрон в сочетании с повторителем обеспечивает увеличение выходного тока.
Ток стабилитрона теперь относительно независим от тока нагрузки, так как по цепи базы транзистора протекает небольшой ток и мощность, рассеиваемая на стабилитроне, значительно меньше (уменьшение в h21Э раз). Резистор Rк можно добавить в схему для того, чтобы он предохранил транзистор от выхода из строя при кратковременном коротком замыкании выхода за счет ограничения тока, и, хотя эмиттерный повторитель нормально работает и без этого резистора, его присутствие в схеме вполне обоснованно. Резистор Rк следует выбирать так, чтобы при максимальном токе нагрузки падение напряжения на нем было меньше, чем на резисторе R.
Упражнение 2.4. Разработайте источник напряжения +10 В, который имел бы такие же параметры, как источник в упражнении 2.3. Используйте в схеме стабилитрон и эмиттерный повторитель. Рассчитайте, какую мощность рассеивают транзистор и стабилитрон в наихудшем случае. Каково процентное изменение тока стабилитрона при переходе от ненагруженного состояния к нагруженному? Сравните эти результаты с результатами предыдущего упражнения.
В ряде вариантов рассмотренной схемы предусматривают меры для снижения пульсаций тока в стабилитроне (протекающего через резистор R). В частности, может быть использован источник тока для питания стабилитрона. Этот случай мы рассмотрим в разд. 2.06. Другой метод основан на использовании в цепи питания стабилитрона фильтра низких частот (рис. 2.13).
Рис. 2.13. Снижение пульсаций в стабилитроне.
Резистор R выбирают так, чтобы обеспечить необходимый ток в стабилитроне. Конденсатор С должен иметь емкость, достаточно большую для того, чтобы выполнялось условие RC >> 1/f. (В одном из вариантов этой схемы верхний резистор заменен диодом). В дальнейшем вы познакомитесь с более совершенными стабилизаторами, в которых выходное напряжение можно легко и плавно настраивать благодаря обратной связи. Вместе с тем они представляют собой гораздо лучшие источники напряжения, выходные импедансы которых измеряются в миллиомах, температурные коэффициенты - в миллионных долях на °С и т. д.
2.05. Смещение в эмиттерном повторителе
Если на эмиттерный повторитель должен поступать сигнал с предшествующего каскада схемы, то лучше всего подключить его непосредственно к выходу предыдущего каскада, как показано на рис. 2.14.
Рис. 2.14.
Так как сигнал на коллекторе транзистора Т1 изменяется в пределах диапазона, ограниченного значениями напряжения источников питания, то потенциал базы Т2 всегда заключен между напряжением UKK и потенциалом земли, а следовательно, Т2 находится в активной области (не насыщен и не в отсечке). При этом переход база-эмиттер открыт, а потенциал коллектора, по крайней мере на несколько десятых долей вольта больше, чем потенциал эмиттера. В некоторых случаях вход эмиттерного повторителя и напряжение питания неудачно соотносятся друг с другом, и тогда может возникнуть необходимость в емкостной связи (или связи по переменному току) с внешним источником сигнала (например, это относится к сигнальному входу высококачественного усилителя низкой звуковой частоты). В этом случае среднее напряжение сигнала равно нулю, и непосредственная связь с эмиттерным повторителем приведет к тому, что сигнал на выходе будет изменяться относительно входа, как показано на рис. 2.15.
Рис. 2.15.Транзисторный усилитель с положительным источником питания не может генерировать на выходе импульсы отрицательной полярности.
В эмиттерном повторителе (а фактически в любом транзисторном усилителе) необходимо создать смещение для того, чтобы коллекторный ток протекал в течение полного периода сигнала. Проще всего воспользоваться для этого делителем напряжения (рис. 2.16).
Рис. 2.16. Эмиттерный повторитель со связью по переменному току. Обратите внимание на делитель напряжения в цепи смещения базы.
Резисторы R1 и R2 выбраны так, что в отсутствие входного сигнала потенциал базы равен половине разности между напряжением источника UKK и потенциалом земли, т. е. сопротивления R1 и R2 равны. Процесс выбора рабочих напряжений в схеме в отсутствие поданных на ее вход сигналов называется установкой рабочей точки или точки покоя. Для этой схемы, как и в большинстве случаев, точку покоя устанавливают так, чтобы на выходе формировался максимальный симметричный сигнал (без ограничений или срезов). Какими должны быть при этом сопротивления резисторов R1 и R2? Применяя общий подход (разд. 1.05), допустим, что импеданс источника смещения по постоянному току (импеданс со стороны выхода делителя) мал по сравнению с импедансом нагрузки (импеданс по постоянному току со стороны базы повторителя). Тогда
R1||R2 << h21ЭRЭ
Из этого соотношения следует, что ток, протекающий через делитель напряжения, должен быть больше, чем ток, протекающий по цепи базы.
Пример разработки схемы эмиттерного повторителя. В качестве примера разработаем схему эмиттерного повторителя для сигналов звуковой частоты (от 20 Гц до 20 кГц). Напряжение UKK составляет +15 В, ток покоя равен 1 мА.
Шаг 1. Выбор напряжения UЭ. Для получения симметричного сигнала без срезов необходимо, чтобы выполнялось условие UЭ = 0,5UKK, или +7,5 В.
Шаг 2. Выбор резистора RЭ. Ток покоя должен составлять 1 мА, поэтому RЭ = 7,5 кОм.
Шаг 3. Выбор резисторов R1 и R2. Напряжение UБ — это сумма UЭ + 0,6 В, или 8,1 В. Из этого следует, что сопротивления резисторов R1 и R2 относятся друг к другу как 1:1,17. Учитывая известный уже нам критерий выбора нагрузки, мы должны подобрать резисторы R1 и R2 так, чтобы сопротивление их параллельного соединения составляло приблизительно 75 кОм или меньше (0,1 от произведения 7,5 кОм на h21э)· Выберем следующие стандартные значения сопротивлений: R1 = 130 кОм, R2 = 150 кОм.
Шаг 4. Выбор конденсатора C1. Конденсатор C1 и сопротивление нагрузки источника образуют фильтр высоких частот. Сопротивление нагрузки источника есть параллельное соединение входного сопротивления транзистора со стороны базы и сопротивления делителя напряжения базы. Предположим, что нагрузка схемы велика по сравнению с эмиттерным резистором, тогда входное сопротивление транзистора со стороны базы равно h21эRэ, т. е. составляет ~= 750 кОм. Эквивалентное сопротивление делителя равно 70 кОм. Тогда нагрузка для конденсатора составляет 63 кОм и емкость конденсатора должна быть равна по крайней мере 0,15 мкФ. В этом случае точке —3 дБ будет соответствовать частота, меньшая чем 20 Гц.